
Mankeerat S. Sidhu, Ryan M. Corey
Department of Electrical and Computer Engineering , Grainger College of Engineering , University of Illinois at Urbana-Champaign

Hear Through App for “Using Adaptive Filters and Combining Different Sound Sources to

Make Hearing in Different Circumstances and More ‘Real’ Experience”

ACKNOWLEDGEMENTS

The app was developed by Mankeerat Sidhu with the aid
of Ryan M. Corey (Postdoc) at the Augmented Listening
Lab (P.I. – Prof. Andrew Singer) at CSL @ UIUC.

AIM

The purpose for the whole app is to do one simple task –
record the microphone sound, amplify it and then play it
back to the headphones. The audio should also be
streamed in Realtime (< 10 ms of delay) and the app
should also have some equalization technique to match
the person’s hearing loss or keeping track of direction.

For hearing aids, most of the relevant sounds are in a
frequency range between 500 and 6000 Hz. As the
Atherogenic index (ATH index) rises but the threshold of
pain doesn’t, it leads to volume compression and if the
latency is more than 10 ms, the user is able to notice the
delay and a delay more than 50 ms causes a conversation
to be impossible. Thus, the app aims to overcome this
problem with low level app development despite the poor
acoustics and limited optimization for low level
development in smartphones.

INTRODUCTION

Many people suffer from hearing loss and listening in a
crowded environment in general raises many difficulties.
Although most people with hearing loss carry hearing
aids, they are often expensive and require regular hearing
care. Since most people already have a smartphone
equipped with a mic and connected with a headphone, it
might be beneficial for general purpose development to
approach low level hear-through functionality through
them. Although the acoustics of the microphones in the
smartphones are worse off than the acoustics of hearing
aids, they can be adapted in a way to provide general
functionality.

The device thus focusses on an Android app that allows
the user to record the smartphone’s microphone input,
amplify and play it back in real time over the user’s
headphones. Despite the limitations imposed by the
hardware functionalities of the device and by the android
platform, the app made through AndroidStudio aims to
operate in general purpose setting and later be
incorporated into the multi-person, multi-speaker device
that uses adaptive filters and combines different sound
sources to make hearing in different circumstances a
more ‘Real’ experience.

METHOD

Android App Framework
Since apps on android platform are built using Java,
developers do not need to worry about memory
management and since Java runs on JVM, it is cross
platform, removing the effort of compiling the app for
every different CPU architecture.

However, JVM slows down the program due to being
JIT compiled and thus making a device that needs low
level latency, the mentioned disadvantages need to be
bypassed.

The NDK helps with that as it allows execution of
Native code (C++) and allows instructions to be
executed directly on the CPU instead of the JVM.

The delay in the sound can be categorized by the
latency induced by the device’s hardware and the
latency induced by the app. To control that,
superpowered was used (discussed in Architecture of
Backend Code)

RESULTS

Measuring the latency of the hear through app shown in
‘method’, and using Reaper, Audacity and the Antelope
Audio Interface, the sound signals from the 4 different
microphones (left and right mic outside the muffs(real
speaker sound)) and (left and right mic inside the muffs
(processed app sound)) were collected. Cross correlating
the two using python and the seeing the delay between
them, the delay averaged out to be 4 ms, which makes
conversation perfectly natural and thus proves that the
app is performing well. The difference between the two
signals heard on reaper was also measure and it turned
out to be around 4 ms as well confirming our results.
Thus, the hear through app achieves its purpose and is
ready to be implemented with multiple mics and an
adaptive filter.

Architecture of Backend Code

Only the latency caused by the software can be controlled,
thus all unnecessary software layers must be removed
that adds to extra latency. Thus, all the sound processing
code is written in C++ to avoid the JVM software layer
(shown in methodology). Superpowered SDK was used to
simplify the access to audio data by the device and as they
claim to be the “Fastest Mobile Audio engine for
Interactive audio apps, music etc.”.

Audio latency induced be the app is solely caused by the

fact that all operations performed during the processing

of the sound take time. Firstly, some operations require

the microphone to record several samples of audio before

even being able to begin processing (like e. g. the Fourier

transformations that are used to apply the equalizer). But

other operations (like memory access) also take time.

Hence, every operation must be evaluated and if any

operation is found to be not necessary, it must be

removed. All remaining operations must be designed in a

way that optimizes the time it takes to execute them. For

example, operations should use pointers to access

memory to avoid unnecessary copies of objects.

CONCLUSIONS

Using the results of the app and testing it in real life, it

can be concluded that the app is functionable and

provides the hear through feature with less than 10 ms of

delay and amplifying the sound concurrently. It can thus

be used in the broader application of combining multiple

sound sources and making the listening experience

through microphones more ‘real’ and making it easier to

understand people in a crowded environment.

Using cross correlation to measure time delay and seeing the latency of the

app.

Looking at the difference

in time between the first

signal in the third row to

the first signal in the

second row giving 4 ms

of delay between the

same audio recording.

The Code in C++ and using SuperpoweredSDK to develop the Audio

Processing component of the Hear-Through App.

Testing the app using an

Audio Interface, a head-

replica with built in mics

and measuring the audio

signals by the external

sound from the speaker

and the sound coming out

of the developed app.

Using Reaper to collect multiple sound signals to be later processed in

Audacity and save the sound recordings as WAV files.

